Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Endocr Soc ; 8(6): bvae039, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38623380

RESUMO

Context: Previous studies have demonstrated associations of endogenous thyroid hormones with diabetes; less is known about stages of diabetes development at which they are operative, mechanisms of associations, and the role of the hypothalamic-pituitary-thyroid axis. Objective: This study examined associations of thyroid hormones with incident prediabetes and diabetes and with changes in glycemic traits in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), the largest cohort of Hispanic/Latino adults with diverse backgrounds in the United States. Methods: The study includes 592 postmenopausal euthyroid women and 868 euthyroid men aged 45 to 74 years without diabetes at baseline participating in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Baseline hormones included thyrotropin (TSH), free thyroxine (FT4), total triiodothyronine (T3), and indices calculated from thyroid hormones evaluating pituitary sensitivity to thyroid hormone. Transitions to diabetes and prediabetes, and changes in glycemic traits determined at the 6-year follow-up visit, were examined using multivariable Poisson and linear regressions. Results: Among women, T3 (incident rate ratio [IRR] = 1.65; 95% CI, 1.22-2.24; P = .001) and TSH (IRR = 2.09; 95% CI, 1.01-4.33; P = .047) were positively, while FT4 (IRR = 0.59; 95% CI, 0.39-0.88; P = .011) was inversely, associated with transition from prediabetes to diabetes. Among men, the T3/FT4 ratio was positively associated with transition from normoglycemia to prediabetes but not from prediabetes to diabetes. Indices measuring sensitivity of the pituitary to thyroid hormone suggested increased sensitivity in men who transitioned from prediabetes to diabetes. Conclusion: Positive associations in women of T3 and TSH and inverse associations of FT4, as well as inverse associations of thyroid indices in men with transition from prediabetes to diabetes, but not from normoglycemia to diabetes, suggest decreased pituitary sensitivity to thyroid hormones in women and increased sensitivity in men later in the development of diabetes.

2.
Mol Cell Endocrinol ; 588: 112202, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552943

RESUMO

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.

3.
J Intern Med ; 295(2): 259-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037246

RESUMO

Rapidly advancing evidence documents that a broad array of synthetic chemicals found ubiquitously in the environment contribute to disease and disability across the lifespan. Although the early literature focused on early life exposures, endocrine-disrupting chemicals (EDCs) are now understood to contribute substantially to chronic disease in adulthood, especially metabolic, cardiovascular, and reproductive consequences as well as endocrine cancers. The contribution to mortality is substantial, with over 90,000 deaths annually and at least $39 billion/year in lost economic productivity in the United States (US) due to exposure to certain phthalates that are used as plasticizers in food packaging. Importantly, exposures are disproportionately high in low-income and minoritized populations, driving disparities in these conditions. Though non-Hispanic Blacks and Mexican Americans comprise 12.6% and 13.5% of the US population, they bear 16.5% and 14.6% of the disease burden due to EDCs, respectively. Many of these exposures can be modified through safe and simple behavioral changes supported by proactive government action to both limit known hazardous exposures and to proactively screen new industrial chemicals prior to their use. Routine healthcare maintenance should include guidance to reduce EDC exposures, and a recent report by the Institute of Medicine suggests that testing be conducted, particularly in populations heavily exposed to perfluoroalkyl substances-chemicals used in nonstick coatings as well as oil- and water-resistant clothing.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Humanos , Estados Unidos/epidemiologia , Exposição Ambiental/efeitos adversos , Disruptores Endócrinos/toxicidade , Efeitos Psicossociais da Doença
4.
Endocrinol Metab Clin North Am ; 52(4): 719-736, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865484

RESUMO

The toll of multiple endocrine disorders has increased substantially in recent decades, and marginalized populations bear a disproportionate burden of disease. Because of the significant individual and societal impact of these conditions, it is essential to identify and address all modifiable risk factors contributing to these disparities. Abundant evidence now links endocrine dysfunction with exposure to endocrine-disrupting chemicals (EDCs), with greater exposures to multiple EDCs occurring among vulnerable groups, such as racial/ethnic minorities, those with low incomes, and others with high endocrine disease burdens. Identifying and eliminating EDC exposures is an essential step in achieving endocrine health equity.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Sistema Endócrino , Fatores de Risco , Disruptores Endócrinos/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-37620727

RESUMO

BACKGROUND: Hormones are linked to cardiometabolic diseases and may be impacted by acculturation though multiple mechanisms. We evaluated associations of Hispanic/Latino background and acculturation with levels of sex- and thyroid-related hormones and the potential mediating effect of adiposity, lifestyle factors, and sleep apnea syndrome on these associations. METHODS: We studied 1789 adults, aged 45-74, from a sub-cohort of the Hispanic Community Health Survey/Study of Latinos. Peri/pre-menopausal women and individuals on medications related to hormones were excluded. Our study assessed eleven sex- and thyroid-related hormones, Hispanic/Latino background, and five acculturation measures. Associations were assessed using multivariable linear and logistic regression adjusted for survey design and confounding variables. We explored potential mediation using a path analysis. RESULTS: In postmenopausal women, acculturation score-MESA was associated with decreased thyroid-stimulating hormone (ß = - 0.13;95%CI = - 0.22, - 0.03) while age at immigration greater than the median (vs US-born) was associated with decreased (ß = - 14.6; 95%CI = - 28.2, - 0.99) triiodothyronine (T3). In men, language acculturation and acculturation score-MESA were associated with increased estradiol and sex hormone-binding globulin (SHBG) while age at immigration greater and lesser than the median (vs US-born) was associated with decreased SHBG. Hispanic/Latino background (Mexicans as reference) were selectively associated with sex- and thyroid-related hormone levels in both sexes. Current smoking and sleep apnea syndrome partially mediated the association of Cuban and Puerto Rican heritage (vs Mexican) with T3 levels in men and postmenopausal women, respectively. CONCLUSION: Selected acculturation measures were associated with thyroid-related hormones in postmenopausal women and sex-related hormones in men. Understanding the mechanisms involved in the relationship of acculturation and Hispanic/Latino background with hormones warrants additional investigation.

7.
Environ Adv ; 122023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37426694

RESUMO

Background: Differences in arsenic metabolism capacity may influence risk for type 2 diabetes, but the mechanistic drivers are unclear. We evaluated the associations between arsenic metabolism with overall diabetes prevalence and with static and dynamic measures of insulin resistance among Mexican Americans living in Starr County, Texas. Methods: We utilized data from cross-sectional studies conducted in Starr County, Texas, from 2010-2014. A Mendelian randomization approach was utilized to evaluate the associations between arsenic metabolism and type 2 diabetes prevalence using the intronic variant in the arsenic methylating gene, rs9527, as the instrumental variable for arsenic metabolism. To further assess mechanisms for diabetes pathogenesis, proportions of the urinary arsenic metabolites were employed to assess the association between arsenic metabolism and insulin resistance among participants without diabetes. Urinary biomarkers of arsenic metabolites were modeled as individual proportions of the total. Arsenic metabolism was evaluated both with a static outcome of insulin resistance, homeostatic measure of assessment (HOMA-IR), and a dynamic measure of insulin sensitivity, Matsuda Index. Results: Among 475 Mexican American participants from Starr County, higher metabolism capacity for arsenic is associated with higher diabetes prevalence driven by worse insulin resistance. Presence of the minor T allele of rs9527 is independently associated with an increase in the proportion of monomethylated arsenic (MMA%) and is associated with an odds ratio of 0.50 (95% CI: 0.24, 0.90) for type 2 diabetes. This association was conserved after potential covariate adjustment. Furthermore, among participants without type 2 diabetes, the highest quartile of MMA% was associated with 22% (95% CI: -33.5%, -9.07%) lower HOMA-IR and 56% (95% CI: 28.3%, 91.3%) higher Matsuda Index for insulin sensitivity. Conclusions: Arsenic metabolism capacity, indicated by a lower proportion of monomethylated arsenic, is associated with increased diabetes prevalence driven by an insulin resistant phenotype among Mexican Americans living in Starr County, Texas.

8.
J Endocr Soc ; 7(6): bvad062, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37260779

RESUMO

Diabetes rates in the United States are staggering and climbing. Importantly, traditional risk factors fail to completely account for the magnitude of the diabetes epidemic. Environmental exposures, including urban and metropolitan transportation quality, are implicated as contributors to disease. Using data from the county-level Environmental Quality Index (EQI) developed for the United States, we analyzed associations between transportation and air quality environmental metrics with overall diabetes prevalence and control within urban/metropolitan counties in the United States from 2006 to 2012. Additionally, we examined effect modification by race/ethnicity through stratification based on the county-level proportion of minority residents. Last, we applied mixture methods to evaluate the effect of simultaneous poor transportation factors and worse air quality on the same outcomes. We found that increased county-level particulate matter air pollution and nitrogen dioxide along with reduced public transportation usage and lower walkability were all associated with increased diabetes prevalence. The minority proportion of the population influences some of these relationships as some of the effects of air pollution and the transportation-related environment are worse among counties with more minority residents. Furthermore, the transportation and air quality mixtures were found to be associated with increased diabetes prevalence and reduced diabetes control. These data further support the burgeoning evidence that poor environments amplify diabetes risk. Future cohort studies should explore the utility of environmental policies and urban planning as tools for improving metabolic health.

9.
Am J Physiol Endocrinol Metab ; 324(6): E488-E505, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134142

RESUMO

Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic ß-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional ß-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of ß-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by ß-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.


Assuntos
Diabetes Mellitus , Disruptores Endócrinos , Animais , Humanos , Insulina , Fenômenos Fisiológicos Celulares , Glucose
10.
Am J Clin Nutr ; 118(1): 329-337, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230178

RESUMO

On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Disruptores Endócrinos/toxicidade , Obesidade/epidemiologia , Obesidade/etiologia , Obesidade/metabolismo , Aumento de Peso , Pandemias
11.
J Clin Endocrinol Metab ; 108(7): 1709-1726, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-36633580

RESUMO

Previous studies demonstrated associations of endogenous sex hormones with diabetes. Less is known about their dynamic relationship with diabetes progression through different stages of the disease, independence of associations, and role of the hypothalamic-pituitary gonadal axis. The purpose of this analysis was to examine relationships of endogenous sex hormones with incident diabetes, prediabetes, and diabetes traits in 693 postmenopausal women and 1015 men aged 45 to 74 years without diabetes at baseline participating in the Hispanic Community Health Study/Study of Latinos and followed for 6 years. Baseline hormones included estradiol, luteinizing hormone (LH), follicle stimulating hormone (FSH), sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), and, in men, testosterone and bioavailable testosterone. Associations were analyzed using multivariable Poisson and linear regressions. In men, testosterone was inversely associated with conversion from prediabetes to diabetes (incidence rate ratio [IRR] for 1 SD increase in testosterone: 0.821; 95% CI, 0.676, 0.997; P = 0.046), but not conversion from normoglycemia to prediabetes. Estradiol was positively associated with increase in fasting insulin and homeostatic model assessment of insulin resistance. In women, SHBG was inversely associated with change in glycosylated hemoglobin, postload glucose, and conversion from prediabetes to diabetes (IRR = 0.62; 95% CI, 0.44, 0.86, P = 0.005) but not from normoglycemia to prediabetes. Relationships with other hormones varied across glycemic measures. Stronger associations of testosterone and SHBG with transition from prediabetes to diabetes than from normoglycemic to prediabetes suggest they are operative at later stages of diabetes development. Biologic pathways by which sex hormones affect glucose homeostasis await future studies.


Assuntos
Diabetes Mellitus , Estado Pré-Diabético , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Estado Pré-Diabético/epidemiologia , Pós-Menopausa , Saúde Pública , Hormônios Esteroides Gonadais , Diabetes Mellitus/epidemiologia , Testosterona , Estradiol , Hispânico ou Latino , Glucose , Globulina de Ligação a Hormônio Sexual/metabolismo
12.
Biol Trace Elem Res ; 201(2): 529-538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35247137

RESUMO

Hispanics/Latinos have higher rates of type 2 diabetes (T2D), and the origins of these disparities are poorly understood. Environmental endocrine-disrupting chemicals (EDCs), including some metals and metalloids, are implicated as diabetes risk factors. Data indicate that Hispanics/Latinos may be disproportionately exposed to EDCs, yet they remain understudied with respect to environmental exposures and diabetes. The objective of this study is to determine how metal exposures contribute to T2D progression by evaluating the associations between 8 urinary metals and measures of glycemic status in 414 normoglycemic or prediabetic adults living in Starr County, Texas, a Hispanic/Latino community with high rates of diabetes and diabetes-associated mortality. We used multivariable linear regression to quantify the differences in homeostatic model assessments for pancreatic ß-cell function, insulin resistance, and insulin sensitivity (HOMA-ß, HOMA-IR, HOMA-S, respectively), plasma insulin, plasma glucose, and hemoglobin A1c (HbA1c) associated with increasing urinary metal concentrations. Quantile-based g-computation was utilized to assess mixture effects. After multivariable adjustment, urinary arsenic and molybdenum were associated with lower HOMA-ß, HOMA-IR, and plasma insulin levels and higher HOMA-S. Additionally, higher urinary copper levels were associated with a reduced HOMA-ß. Lastly, a higher concentration of the 8 metal mixtures was associated with lower HOMA-ß, HOMA-IR, and plasma insulin levels as well as higher HOMA-S. Our data indicate that arsenic, molybdenum, copper, and this metal mixture are associated with alterations in measures of glucose homeostasis among non-diabetics in Starr County. This study is one of the first to comprehensively evaluate associations of urinary metals with glycemic measures in a high-risk Mexican American population.


Assuntos
Arsênio , Cobre , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Molibdênio , Adulto , Humanos , Arsênio/urina , Glicemia , Cobre/urina , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/urina , Insulinas/sangue , Americanos Mexicanos , Molibdênio/urina , Texas
13.
J Clin Transl Sci ; 7(1): e263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38229904

RESUMO

Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.

15.
Environ Health Perspect ; 130(5): 57005, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533074

RESUMO

BACKGROUND: Research suggests environmental contaminants can impact metabolic health; however, high costs prohibit in vivo screening of putative metabolic disruptors. High-throughput screening programs, such as ToxCast, hold promise to reduce testing gaps and prioritize higher-order (in vivo) testing. OBJECTIVES: We sought to a) examine the concordance of in vitro testing in 3T3-L1 cells to a targeted literature review for 38 semivolatile environmental chemicals, and b) assess the predictive utility of various expert models using ToxCast data against the set of 38 reference chemicals. METHODS: Using a set of 38 chemicals with previously published results in 3T3-L1 cells, we performed a metabolism-targeted literature review to determine consensus activity determinations. To assess ToxCast predictive utility, we used two published ToxPi models: a) the 8-Slice model published by Janesick et al. (2016) and b) the 5-Slice model published by Auerbach et al. (2016). We examined the performance of the two models against the Janesick in vitro results and our own 38-chemical reference set. We further evaluated the predictive performance of various modifications to these models using cytotoxicity filtering approaches and validated our best-performing model with new chemical testing in 3T3-L1 cells. RESULTS: The literature review revealed relevant publications for 30 out of the 38 chemicals (the remaining 8 chemicals were only examined in our previous 3T3-L1 testing). We observed a balanced accuracy (average of sensitivity and specificity) of 0.86 comparing our previous in vitro results to the literature-derived calls. ToxPi models provided balanced accuracies ranging from 0.55 to 0.88, depending on the model specifications and reference set. Validation chemical testing correctly predicted 29 of 30 chemicals as per 3T3-L1 testing, suggesting good adipogenic prediction performance for our best adapted model. DISCUSSION: Using the most recent ToxCast data and an updated ToxPi model, we found ToxCast performed similarly to that of our own 3T3-L1 testing in predicting consensus calls. Furthermore, we provide the full ranked list of largely untested chemicals with ToxPi scores that predict adipogenic activity and that require further investigation. https://doi.org/10.1289/EHP6779.


Assuntos
Adipogenia , Ensaios de Triagem em Larga Escala , Células 3T3-L1 , Animais , Ensaios de Triagem em Larga Escala/métodos , Técnicas In Vitro , Camundongos
16.
Environ Res ; 212(Pt C): 113413, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537494

RESUMO

BACKGROUND: Disrupted thyroid homeostasis plays a role in neurocognitive dysfunction and metabolic disorders. Since individuals are exposed to multiple metals simultaneously, it is important to assess the effects of metal mixtures on thyroid hormone status. This study aimed to investigate the associations of metal mixtures and individual metals with thyroid hormone levels. METHODS: Data included 2399 men and 1988 women from the 2007-2012 National Health and Nutrition Examination Survey (2007-2012). Thyroid hormones measured included total triiodothyronine (T3), total thyroxine (T4), free forms of T3 (FT3) and T4 (FT4), and thyroid stimulating hormone (TSH). We included twelve metals (arsenic, barium, cobalt, cesium, molybdenum, antimony, thallium, tungsten, and uranium from urine; cadmium, lead, and mercury from blood) in traditional linear regression models controlling for 12 metals simultaneously and in quantile-based g-computation (QGC) to assess the relative contribution of each metal as well as the overall association with thyroid hormones as a metal mixture. RESULTS: There were associations of the total metal mixture with thyroid hormones for T3 (beta: -0.023, 95% CI: -0.04, -0.01, in women), T4 (beta: -0.03, 95% CI: -0.05, -0.01, in men; beta: -0.026, 95% CI: -0.04, -0.01, in women), and the T3:T4 ratio (beta: 0.026, 95% CI: 0.01, 0.05, in men). Arsenic had negative contributions to T3 and T4. Cadmium had a positive contribution to T4 but negative contributions to T3 and T3:T4. Lead had a positive contribution to T3 and T3:T4, but a negative contribution to T4. CONCLUSION: Multiple metals as a mixture were associated with thyroid hormone levels. Arsenic, cadmium, and lead were individually associated with multiple thyroid hormones. Examination of associations of metal mixtures and individual metals with thyroid hormones can contribute to an understanding of thyroid hormone homeostasis and provide evidence for developing intervention and guidance for health promotion.


Assuntos
Arsênio , Cádmio , Feminino , Humanos , Masculino , Metais/toxicidade , Inquéritos Nutricionais , Hormônios Tireóideos , Tireotropina , Tiroxina , Tri-Iodotironina
17.
Biochem Pharmacol ; 199: 115015, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395240

RESUMO

Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.


Assuntos
Disruptores Endócrinos , Adipogenia , Tecido Adiposo , Pré-Escolar , Disruptores Endócrinos/toxicidade , Exposição Ambiental/efeitos adversos , Humanos , Obesidade/etiologia
18.
FEBS Lett ; 595(24): 3042-3055, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34780071

RESUMO

Selenium is an essential trace element of interest for its potential role in glucose homeostasis. The present study investigated the impact of selenium supplementation as selenomethionine (SeMet) on insulin secretion in MIN6-K8 cells, a pancreatic ß-cell model. We found that SeMet enhanced percent glucose-induced insulin secretion, while also increasing tolbutamide- and KCl-induced percent insulin secretion. RNA-sequencing showed that SeMet supplementation altered expression of several selenoproteins, including glutathione peroxidase 3 (Gpx3) and selenoprotein P (SelP). Targeted knockdown of Gpx3 increased both percent and total insulin release, while SelP knockdown increased insulin content and insulin release. Collectively, these studies support a putative role for selenium and selenoproteins in the regulation of insulin secretion, glucose homeostasis, and diabetes risk.


Assuntos
Secreção de Insulina/efeitos dos fármacos , Insulinoma/metabolismo , Selenometionina/farmacologia , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Insulina/metabolismo , Insulinoma/genética , Insulinoma/patologia , Camundongos , Potássio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tolbutamida/farmacologia
19.
Endocr Connect ; 10(9): 1018-1026, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34343109

RESUMO

Environmental parameters, including built and sociodemographic environments, can impact diabetes control (DC). Epidemiological studies have associated specific environmental factors with DC; however, the impact of multidimensional environmental status has not been assessed. The Environmental Quality Index (EQI), a comprehensive quantitative metric capturing five environmental domains, was considered as an exposure. Age-adjusted rates of DC prevalence for each county in the United States were used as an outcome. DC was defined as the proportion of adults aged 20+ years with a previous diabetes diagnosis who currently do not have high fasting blood glucose (≥126 mg/dL) or elevated HbA1c (≥6.5). We conducted county-level analyses of DC prevalence rates for the years 2004-2012 in association with EQI for 2006-2010 and domain-specific indices using random intercept multilevel linear regression models clustered by state and controlled for county-level rates of obesity and physical inactivity. Analyses were stratified by rural-urban strata, and results are reported as prevalence rate differences (PRD) with 95% CIs comparing highest quintile/worst environmental quality to lowest quintile/best environmental quality. The association of DC with cumulative environmental quality was negative after control for all counties (PRD -0.32, 95% CI: -0.38, -0.27); suggesting that rates of DC worsen as environmental quality declines. While overall environmental quality exerts effects on DC that vary across the rural-urban spectrum, poor sociodemographic, and built environmental factors are associated with decreased DC nationally. These data suggest improvements in environmental quality mediated by larger-scale policy and practice interventions may improve glycemic control and reduce the morbidity and mortality arising from hyperglycemia.

20.
Nutrients ; 13(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445052

RESUMO

Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic's effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and ß-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic's metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on ß-cell-related physiological parameters.


Assuntos
Arsenitos/toxicidade , Glicemia/efeitos dos fármacos , Deficiências Nutricionais/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/sangue , Selênio/deficiência , Compostos de Sódio/toxicidade , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Deficiências Nutricionais/sangue , Deficiências Nutricionais/etiologia , Dieta , Modelos Animais de Doenças , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...